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Geometrical analysis of chaotic mixing in a low Reynolds number magnetohydrodynamic
quadripolar flow
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A mixing device for highly viscous fluids with finite electrical conductivity is investigated theoretically.
Stirring is performed by means of electromagnetic forces provided by inductor wires located outside the flow
domain. The flow shows hyperbolic and elliptic singular points. Inductors are displaced in a periodic manner,
leading to an efficient stretching and folding mechanism. The goodness of mixing is quantified by means of a
geometrical analysis based on box-counting techniques. This analysis gives valuable information about advec-
tion of a spot of dye injected in the flow, in the limit of infinite Peclet numbers. A spatiotemporal criterion for
mixing efficiency is derived, and characteristic scales are analyzed. The influence of various parameters on
mixing efficiency is discussed by making use of both the geometrical analysis and Paiactoss.
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[. INTRODUCTION layer of fluid near the boundari€selectromagnetic skin’,
so that the fluid will be stirred in a periodic manner.

Mixing in low Reynolds numbers flows is a topic of great  In order to quantify mixing efficiency one has to define
interest in fluid dynamics as many mixing devices involvewhat is mixing on mathematical grounds. The following
flows where viscous forces dominate. For example, efficientmathematical(purely topological definition has been pro-
mixing can be performed at low Reynolds number in cavityposed in Ref.[6] (strong topological-theoretical mixing
flows (Chien, Rising, and Otting1]), or in the annular re- One will say that a flow is a mixer ffor all subset A and B
gion between eccentric rotating cylindédeffery[2], Ballal ~ of the flow domains with nonempty interior, there exist T
and Rivlin[3], Aref and Balachandd#]), or between con- >0 such that for all &T:®,(A)NB# ¢, where ®(X) is
focal elliptic cylinders (Saatdjian and MidouX5]). The the position at time of a tracer initially located akK. This
mechanism leading to these efficient mixing properties isneans that a spot of dy@r any passive scalginitially
Lagrangian chaos. Indeed, when the trajectory of a fluidblaced in the continuum will cover any part of the flow do-
point is very sensitive to its initial position, two fluid points main at sufficiently long times. This definition is much
initially close to each other might quickly move away asweaker than definitions involving the scalar concentration.
time evolves, so that a spot of dye injected in such a flow idndeed, perfect mixing requires the scalar concentration to be
likely to spread rapidly into the whole flow domain. uniform, whereas the above definition only implies that the

The flow we consider in the present paper is divergencescalar concentration is nonzero everywhere within the flow
free and two-dimensional. If4(x,y) denotes the stream domain. As an example, consider the sedimentation of salt in
function, the positionX,y) of a tracer evolves according to a water tank after stirring: even if the salt concentration is

larger at the bottom of the tank than at the {lyecause of
dx ¢ gravity effects, it is nonzero everywhere, so that it would
EZW(X’W’ (1) satisfy thetopological criterion above in spite of the low
quality of mixing. However, the main advantage of this cri-
terion is that it does not require the computation of a eulerian
d_y - a_‘/'(x y) (2) field (scalar concentrationand can be used from Lagrangian
dt ax analysis of a set of tracers. Note that the tifhia the above
definition depends o\ and B, and is finite if molecular
so that the system can be described as a Hamiltonian systediffusion is non-negligible. This definition will be used and
with one degree of freedom. Such a flow cannot providemodified in Sec. Ill in order to take into account the length
chaos, and has very poor mixing properties. However, if thecale of the subs&, which is clearly an important parameter
phase portrait of this Hamiltonian system displays ho-to quantify the goodness of mixing. Also, the positiorBoik
moclinic or heteroclinic trajectories, the flow is structurally an important parameter: any zoBeof the flow domain has
unstable and is likely to provide chaos under temporal perto be reached by the dye. Finally, whatever the staad
turbations(Ottino [6]). In particular, this makes it possible to the positionx of B, the time T has to be set as small as
design efficient time-periodic two-dimensional mixers. possible. This means that mixing efficiency must be quanti-
Time-periodicity in various two-dimensional mixeffike fied in terms of scale, position, and time. In the present paper
cavity flow, or journal-bearing flow, or flow between confo- we make use of box-counting techniques to derive a criterion
cal ellipses is provided by moving the walls in a periodic involving scale and time. It enables to plot a “spectrum,”
manner. In the present work time periodicity will be where a mixing efficiency at scaleas plotted versus, and to
achieved by inducing time-periodic electric currents in a thinestimate the time required for mixing. In the next section we
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X FIG. 2. Streamlines of the flow in the first quadrant obtained
from the analytical solution of Ref7], for d=3.
- where uo denotes the magnetic permeability ands the
electrical conductivity of the liquid. The velocity of the fluid
inside the magnetic layer can then be calculated by making

. . . . use of matched asymptotic expansidSsmeyd and Moffatt
FIG. 1. Sketch of the quadripolar flow@ is a stagnation point, [8]), so that the flow inside the whole cylinder can be ob-

and the black dot¢®) are the centers of four vortices of equal tgined by solving the flow equations with a boundary condi-
strength in absolute value. The flow is two-dimensional and embedﬂon atr=R,. This boundary condition reflects the dynam-
ded in a circle of radiu®, . (b) Shows the device after the rotation 0

has b ted Th ints 11 and 12 indicate th it ics, and in particular the effect of the pressure gradients
as been operated. The gray points 12 and 1= indicate the posilions o o 5t by the Laplace force, inside the magnetic layer, If
of the electrical inductors.

denotes a typical velocity of the fluid, we assume

present the mixing device we use. Results are analyzed in UgRo
Sec. IV. Re=

<1, (4)

where v is the kinematic viscosity of the fluid. The flow
inside the whole domain can therefore be calculated by solv-
We consider an electrically conducting liquid lying within ing the Stokes problem
a cylindrical tank of radiusR,, and two parallel electric )
wires (inductorg initially located at I;=(l,,0) and I, A%Y=0, <Ry, ®)
=(—10,0), with1,>R, (Fig. 1). The electric current in in- ”
ar

II. THE MAGNETOHYDRODYNAMIC MIXING DEVICE

ductorl, is 12 sin(wt), and electric current in inductds,

is —12 sin(wt). The magnetic fieldB induced by these
currents creates a flow within the fluid via the Laplace force.
The typical velocity of this flow is proportional t* and ~ where ¢ is the stream function and,,(¢) denotes the azi-
decays witH ;. When the frequency of the electric current muthal velocity atr =R,. This problem has been solved by
is large, the induced Stokes flow can be calculated analytiBrancher and Goichof7], and their analytical solution is
cally (Brancher and Goichdt7]). Indeed, in this case the used in the present paper to investigate the mixing properties
induced current density within the fluid is located in the of this device. The spatial structure of the resulting velocity
vicinity of the boundary =R,, wherer = \x>+y?, inside a  field only depends on the ratio

layer of thickness

=0 and ——=V,(0) at r=Ry, (6)

|
d=—,
Ro

<Ry, ()
N e) 0 which is an important parameter of the device. Figure 2
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shows the streamlines of this flow wher=3. Heteroclinic  the fluid (Fig. 5, one observes that the dye turns into an
trajectories are visible, which is an important feature for mix-elongated filament, due to the stretching induced by the flow,
ing. and that this filament rapidly spreads all over the domain.
The shape of the streamlines can be readily interpreted bintuitively, the fact that thepreadingis fastis a satisfactory
means of elementary physical arguments. When the freeriterion for efficient mixing, and in the next two sections we
guencyw is large the electromagnetic effects are felt onlytry to quantify these two features in terms ofpatial and
inside the layelRy— d<r<R,. In this layer the fluid will temporalcriterion.
move from high-pressure zones to low-pressure zones. The
electromagnetic pressul®?/2u, has a maximum near the A. Spatial criterion for mixing efficiency
inductors(that is, at pointsA and C), and is minimum aB
andD (Fig. 1). Hence, the fluid within the layer moves from
Ato B andD, and fromC to B andD.
As mentioned above, two-dimensional steady flows have F=®(F).
very poor mixing properties. In order to improve the mixing
properties of this flow we rotate the aXig—I, with an an-  We then quantify the space-filling properties of the dye dis-
gular velocity{)(t) = £ (), in a periodical manner. The sign tribution by means of elementary box-counting techniques
of Q(t) is modified everyT, seconds, so that the stretching (Falconer{11]). Let No(l) be the minimal number of boxes
axisOx (and henceforth the compression a®ig) oscillates  of size! required to cover the flow domain. If the flow do-
around its initial positior{Fig. 1(b)]. The oscillation of the main is a square of side, we haveNq(l)= |_(2)/|2, and if the
axesOxandOy leads to a stretching-and-folding mechanism,flow domain is a disk of diametet, we have Ny(l)
\évaht:ggelz the purpose of our study. The Stokes numbers St | 2/412. |n any case, we have

Let F be the subset of the plane covered by the dye at
time t. If the dye initially covers an are&,, then

L
R No(l)~ 2 (10)

St= <1. (7)

14
wherel is the diameter of the flow domain, and is also the
Conditions(4) and (7) manifest the fact that the diffusive sjze of the smallest box covering the whole domaim(f,t)
time scaIeRglv is much smaller than both the convective js the minimal number of boxes of sizeequired to coverF
time scaleRy/uy and the rotation time scale (4. The  at timet, and if the dye is perfectly mixe@dn the topological
stretching-and-folding mechanism will be efficient if the two sensg with the carrying fluid after some tim& (i.e., F is
time scalesRy/ug and 1£), are of the same order of mag- equivalent to the flow domajnthen
nitude, that is,
N(l,t)=Ngy(l) for all I>0 and t>T,

Uo

= ~1. (8) that is, the coverage of also covers the whole flow domain.
RoQo This last relation manifests the fact that perfect mixiimy
the geometrical sensés achieved when the dye has a well-

Clearly, this parameter is of major importance for mixing yefined Kolomogorov capacit =2, and an integral scale
efficiency, and its influence has been investigated in detaﬂEO In the general case we have

by Brancher and Goichdf7]. In the following we will take

s=1 and discuss the effect of other parameters. Because the N(I,)<Ng(l),
rotation of the axes is not steady, but reversed eviyy
seconds, it is also of interest to define the ratio: so that it is interesting to consider the coverage fraction
QT N(l,t)
k=—-2, 9) 7(1,t) = , (12)
27 No(l)

which is the number of turns performed by the axes betweewhich is equal to 1 for all>0 andt>T if perfect mixing is
two consecutive reversals. This ratio is also of major impor-achieved, and which is smaller than 1 if not. This ratio can
tance for the quality of mixing, as it strongly influences thealso be thought of as the ratio of the area of dye’s coverage

folding effect. [~12N(l,1)], to the area of the flow domain-(L3).
For a fixed timet one might haver(l,t)=1 for some
IIl. GEOMETRICAL TOOL TO ANALYZE MIXING scalel, 7'(| ,t)<1 at other scales, depending on the detailed
EEEICIENCY dye distribution. If we assumé is an elongated filament of

length £(t) and thicknes®(t) (Fig. 3), the general shape of

The mixing efficiency of this flow can be quantified by 7(1,t) can be readily obtained. Because the flow is diver-
making use of elementary box-counting techniq(ee, for  gence free, we have

example, Nicolleay9]; Vainshtein, Sagdeev, and Rosner
[10]). By following tracers(or a “numerical spot of dye) in L(t)~Syle(t),
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FIG. 4. Sketch of the coverage fractiefl) in log-log plot, in
the general casesolid line), and in the case of a spatially optimum

scalar distribution(dashed ling The dotted line shows(l) when
an empty blob of sizé&; is present, and mixing is spatially optimum
FIG. 3. Sketch of a spot of dye placed within a domain of radiusoutside this empty blob.

R, at timet=0. For sufficiently long times the spot can be stretched _
into a thin filament of finite thickness (13)], and we compute(l,t) directly from Eq.(11), where

bothN(l,t) andNg(l) are obtained by running box-counting
whereS, is the area ofF (which has to be constant if mo- algorithms.
lecular diffusion is neglectéd Also one can check that  Because the scaling of(l,t) cannot be modified fof
N(I,t) scales likel ~2 for scaled <e(t) as the filamentFis <7 (if the dye is not likely to diffusg and also because
“seen” like a surface at those scaléBig. 3. Whenl is  7(l,t) is an increasing function df the only way to maxi-
much bigger tham(t), but not too large, howevef can be  mize 7(1,t) for all | is to have
thought of as a line, anN(l,t) scales likd ~. This scaling
is valid up to a scaley (say), which is the scale above which (7.0)=1, (14)
the circonvolutions of the filament modify the scaling of
N(l,t). This scale can be thought of as the striation thicknes
of the dye distribution. In the general case the scaling o
N(l,t) for I>7% is unknown and depends on the detailed
dynamics of the flow:

as shown in Fig. 4dashed ling In this case the spatial
tructure of the filament is satisfactory in that the percentage

of boxes required to cover the whole domain and intersecting

the filament is set as large as possible. By noticing that

eN(e,t)~ yN(7,t)~ L we have

N(l,t)=f(l) if n<I<L, (12 ANt 7

_ _ _ (pt)~——F—~—=1, (15

whereL=L(t) is the size of the smallest box covering the Lo Mopt

whole subsetF. The functionf(l) is unknown (and also ) .

depends o), but decays faster thdn* due to the circum- Where we have sejqp=Lo/L. The scaler,y is the largest

volutions of the filament. Finally, in the case whérecL,,  Possible value of the striation thicknegs for a given fila-
and whenL<|<L, a single box is necessary to cover the mentlengthl. Of coursez,, decreases witld and has to be

filament, which is then seen like a “dot,” so that(l,t)  as small as possible, but this is not sufficient for satisfactory

=1 there. By making use of EGL0), the order of magnitude Mixing, as» must also be close tg,, to ensure a satisfac-

of 7(1,t) can be readily obtained: tory spatial distribution of the dye. We will therefore choose
the “spatial quality” coefficient as the coverage fraction at
SO/LS if 0<l<e(t) scalen, that is, 7(7,t), which is the ratio ofy to #7,,. Note
2 that when7(%,t)~1 the integral scald. satisfies(L,t)
LIILG if e(t)<I<n(t) . o )
(1,t)~% 2 s (13 ~1, that isL~L, which is clearly an important necessary
t(D/Lg if p<I<L(t) condition for satisfactory mixing.
|2/L§ if L(t)<I<L,, In the case wheré(l) is a power law of the form
and is sketched in Fig. 4 in log-log plot. The coverage frac- ()~ |_ P <L 16
tion 7(I,t) quantifies the space-filling properties of the scalar M L AN (16)

distribution at a given scaleif 7(l,t) is close to 100%, then

one can say that the scalar distribution is homogeneous atith D €[1,2] then one might say that the filament has a
scalel. Note that Eq(10) is only an approximation when the well-defined Kolmogorov capacityD over the range of
flow domain is a disk, and could lead tgl,t)>1 at large scaleq »,L]. For example, whetF is an algebraic spiral of
scales. In practice we do not use Ef0) [and therefore Egs. the formr=C#~ ¢, «>0, in polar coordinatesr(#), then
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D=1+1/(1+«) (Vassilicos and Hunf12]). Such a spiral empty blobs can be estimated as follows. We define the
can be obtained when the flow is a point vortex located at théength scalex(t) where 7 reaches its mean value
origin, and corresponds tb=1.67. In general, wheld is
not an integerF is called “fractal.” [Note that the Kolmog- 1 (Lo
- i ) . T(Kk,t)=— 7(I,t)dl. (18
orov capacity defined above is not equivalent to the Hausdorf L-Jo
dimension(Falconer[11]). For example, the Hausdorf di- 0
mension of an algebraic spiral is well defined, but equals 1when the dye distribution is spatially optimum, one can

whereas its Kolmogorov capacity is1]. ~ show thatk~ 70,. However, when the dye distribution dis-

When Eq.(16) is satisfied, we obtain a simple expressionplays an empty blob of typical size then () shows a

for (7): sharp variation at~| (Fig. 4, dotted ling The above inte-

( L\?/ L\ @ Drp-1 gral can then be readily calculated, and we (gemoving the

(np)~\7" - time variable
I\ e I I
<1 =l T(K)~1+S';3+T(77) _C_i)__cy (19)
213 Lo 2Lo/ Lo

and we recover the fact tha{ ») is close to 100% only if

D=2 andL~L,. (Note that this result is valid only in the and in the limit wheree< < and Sy<Lj:
limit where £>L, i.e., for an elongated filamehtRelation
(17) can be used to estimate the efficiency of devices for
which the Kolmogorov capacit is known. For example, if
we consider a fractal distribution of dye with=1.5, and
assumind-~Lg and £/L=1000(say then7(%)=0.001, so This shows that, in this limit, we have
that the spatial distribution is not satisfactory. Also, the dye

distribution obtained from the Baker’s transformation has a m(p)=7(x)=<1,
Kolmogorov capacityD =1.67, so that it does not perfectly
fulfill the above criterion. In contrast, the Archimedes spiral
has a Kolmogorov capacity =2, which is well defined over
the range of scaleg<|<L (wherey is the difference of the
radii of two consecutive coijsand fulfills the spatial crite- We therefore conclude thatis of the order ofz,, when the
rion 7(7)~1 if L~L,. Note that the Archimedes spiral is a spatial quality criterion is fulfilled, and is of the order lgfif
fictitious structure that cannot be easily obtained in a reahn empty blob of sizé. is present. This property is very

C

T(K)~1+7'(77)||_—(;—II_—O. (20)

so that the only acceptable order of magnitude<ads

k~l;.

flow. useful to estimate the quality of mixing, and we will use it in
In practice, we will not try to measure Kolmogorov ca- Sec. IV.
pacities, and we will only measure the ratig(7(t),t) Note thatk does not give any information about tloea-

= n(t)/ nop(t) and check whether it is close to 1 or not. tion of the empty blob.

B. Spatiotemporal criterion for mixing efficiency D. Link with a concentration-based criterion

A spatial criterion is not sufficient to quantify mixing ef-  Mixing efficiency is usually quantified by means of the
ficiency, since the time required to reach a satisfactory dy&oncentration of the scalar. Because we neglect dnffusmn ef-
distribution has to be set as small as possible. This is thECtS, the dye concentration is a binary scalar field:
reason why the temporal evolution ef#,t) is of great in- Y.
terest. In the following we will therefore estimate the quality ™"’
of mixing by investigating the evolution of(#(t),t). If 1 if xeF (21)
7(n(t),t) increases quickly with time up te=1, then we = :
will say that the mixing is satisfactory. (#(t),t) increases 0 otherwise, (22)
slowly, or stabilizes to a value<1, then we will say thatthe and we define a “weak” concentration field:
mixing is not satisfactory.

I
C. Characteristic scale of empty blobs c(x,t)= 12) soxix I)X(X,t)dzx- (23

Visualizations of dye distribution often show compact ar-
eas(“empty blobs™) that are not covered by the dye, sur- Mass conservation implies
rounded by a rather homogeneous dye distribution. This can

. . . . N(I

be observed, for example, in cavity flows or journal-bearing 2 Q 2
= . . = x(X,t)dx= x (X, 1)d*x.

flows when stirring is not performed in an optimum manner. Whole domain =1 Jeoxx )

Also, in journal-bearing flows, the flow domain is not simply ' (24)

connex, so that the diameter of the inner cylinder inevitably
appears in box-counting data. The typical length of suclHence we have
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FIG. 5. Simulation of dye advection in the MHD mixer, fdr
s=1, andk=%. From top to bottom and left to right=0, t
t=2T, t=3T, t=4T, t=5T, t=6T, t=7T, andt=8T.

2,
T,

N(I)

So=,21 12c(x;,1), (25)

and if cpin(l) =min{c(x;,1), i=1...N(l)} (which is non-

FIG. 6. Distributon of the tracers dt=8T, for d=2 ands
=1. From top to bottom and left to righk= 7=, k=%, k=1, and

Indeed, one can check that the scalar at tirhas the same
“shape” (although it is thinner than the scalar at timeé
+T, but displays less small-scale circonvolutigisse Fig.
5). Hence,r(l,t) andr(l,t+T) are very close at large scale,

zero as the minimum is taken only over boxes that intersedbut also at small scale, since we know thatl,t+T)

F) andcpl)=maxc(x,l), i=1,...N(l)}, we get:

N(D1ZCmin(1)=So=N(1)I?Cral), (26)
that is[since (1) = N(1)/No(1)=I2N(1)/L3],
| L§< L L3 )
Cmin( )g\m\cmw& )g ( 7)

We therefore observe that the spatial criterigh)=1 is a
necessary condition for the concentratic(x; ,|) to be uni-
form (~SOILS). If, in addition, the scalar mass lying within
each box is the same in every b»e., the scalar is “homo-
geneous” in the sense of Hentschel and Procdd@g, then
7(1)=1 is equivalent ta(x; 1) =Sy /L3 for all i.

The criterion based on(l) is therefore weaker than the
concentration-based criterion, but is easier to use since

does not require the use of eulerian fields such as concentra;

tion.

E. Calculation of the scaley(t) in the general case

In order to evaluate from the curver(l,t) we have cho-

=7(1,t)=S,/LZ for I<e(t+T). It is only in the vicinity of
=7 that 7(1,t) and 7(I,t+T) differ significantly. Hence,
7(l,t)—7(I,t+T) displays a peak dt~ »(t), and the loca-
tion of that peak gives us an estimation %ft).

IV. RESULTS

Figure 5 shows the evolution of a set of tracers in the
flow. We use 5000 tracers &0, and dynamical memory
allocations make it possible to use®lPacers at=8T. All
computations have been done on a personal computer. Four
simulations of this kind have been performed witk 2, s
=1, andk=+, k=%, k=3, k=3. Figure 6 shows the dis-
tribution of tracers at=8T in the four cases. Significant
differences exist, as large empty zones are visible in the case
k=% and are much smaller in the other cases. These differ-
ences can be quantified as follows.

Figures 7, 8, and 10 show the evolution of various geo-
metrical variables for the four different simulations of scalar
fransport in the MHD mixer. We observe that the evolution
f the perimeter of the spdtvhich is about twice its length
) reflects the huge stretching properties of the f(&ig. 7),
as the perimeter increases drastically. Eer:, the increase
of L(t) is faster than for the three other valueskpfind its
top value is also very large (10.,), as stretching is more
significant in this case. Note that whén=; stretching is

sen to make use of the periodicity of the mixing device.also very efficient, whereas it is much less significantkor
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*
E

FIG. 7. Evolution of the logarithm of the pe-
rimeter (which is about twice the lengtl), for
k=15 (0), k=3 (X), k=% (+), k=3 (*). In all
cased=2 ands=1.

'\l)og | 0(pert‘r;neter / L02

=1 andk=Z. This tendency is also visible in the evolution smaller values ok lead to a slower increase of 7(t),t).

of the integral scalé (Fig. 8. Note that, in the four cases, These differences confirm the tendency shown in Fig. 6.

the peak value of is reached after two or three periods only,  The evolution of the scal&(t) gives valuable informa-
and this is a satisfactory feature for mixing efficiency. Thetion about the spatial structure of the scalar distribution. In-
decay of the microscalg is also very much sensitive ta  deed, fork= %, « remains of the order of 0.1 for long times.
The larger thek, the faster the decay of(t). This tendency In contrast, for larger the scalex is much smaller, and

is also visible in Fig. 9, as the increasex{i,t) versusl is  drops to 102 in the casek=3 andk=3, in quantitative
sharper fok= 3 than for the three other values. However, asagreement with results of Fig. 6.

noticed above, it is noy alone, but the ratia( %) = 5/ 7y Poincaresections give interesting information about mix-
that enables to quantify spatial mixing efficiency. This ratioing, and are easily obtained in the case of two-dimensional
is plotted in Fig. 10, and we observe that for 3 the ratio  time-periodic flowg6]. Indeed, in this particular case a Poin-
7(n(t),t) versust increases faster than for the other casescaresection can be thought of as a set of stroboscopic images
and reaches the value 92% after seven periodskFagy the  of tracers. We have computed Poincaeetions by using six
evolution of 7(#(t),t) is also rather satisfactory. In contrast, tracers, the time elapsed between two consecutive images

-

®
®
*®
®
]

o0 o
(o>} [o2]

LE/L

t/T FIG. 8. Evolution of the integral scale and
of the microscaley, for k=75 (O), k=3 (X), k
=1 (+), k=% (*). In all casesd=2 ands=1.
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FIG. 9. Plot of the coverage
fraction (I,t) vs |, fromt=0 to
t=8T (for d=2, s=1, and four
values ofk).
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FIG. 10. Evolution of the scale and of 7( %),
for k=15 (0), k=5 (), k=7 (+), k=3 (*). In
all cased=2 ands=1.
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empty blobs[14] (obtained in the casd=4, for example
also lead to a larger limit value foe(t).

V. CONCLUSION

We have investigated the efficiency of mixing in a low
Reynolds number MHD mixer, by making use of a topologi-
cal analysis based on box-counting techniques. The main ad-
vantage of this method is that it gives quantitative, short-time
information about mixing efficiency and does not require the
computation of eulerian fields such as concentration. The
numerical values of various geometrical parameters agree
with the qualitative results plotted in Figs. 5 and 6, and also
with Poincaresections. The main drawback of the geometri-
cal analysis is that it is based on a topological criterion for
mixing goodness, which is weaker than criteria based on
scalar concentration. Because the geometrical analysis is fast
and can be performed directly from image-processing tech-
niques, we believe it could be interesting to install such a
being T. Each picture of Fig. 11 shows 10 000 images. Ittool on an experimental facility, in order to analyze and op-
clearly appears that the mixing device is very satisfactory irtimize mixing in real time.
that the tracers spread in the whole flow domain, except The present analysis shows that the MHD mixer can be
when k=15. In this case four empty blobs of size about extremely satisfactory, as parameters leading to a fast and
one-tenth of the cylinder diameter are visible, and this sugspatially efficient mixing can be found. We have fixed the
gests that the scale(t) should not drop under 01y, even time ratios=1, in contrast with Ref{7], and observed that
for long times(lower graph of Fig. 10 Other runs with large  satisfactory parameters could also be found in this case.

FIG. 11. Poincaresections in the MHD mixer fod=2 ands
=1, whenk= 35 (left) andk=3 (right). Results wherk= % and
k=1 are similar to the right figure. Empty blobs of scale-0.1 are
observed in the case wheke- 7%, in agreement with the geometri-
cal analysis.
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