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Geometrical analysis of chaotic mixing in a low Reynolds number magnetohydrodynamic
quadripolar flow
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A mixing device for highly viscous fluids with finite electrical conductivity is investigated theoretically.
Stirring is performed by means of electromagnetic forces provided by inductor wires located outside the flow
domain. The flow shows hyperbolic and elliptic singular points. Inductors are displaced in a periodic manner,
leading to an efficient stretching and folding mechanism. The goodness of mixing is quantified by means of a
geometrical analysis based on box-counting techniques. This analysis gives valuable information about advec-
tion of a spot of dye injected in the flow, in the limit of infinite Peclet numbers. A spatiotemporal criterion for
mixing efficiency is derived, and characteristic scales are analyzed. The influence of various parameters on
mixing efficiency is discussed by making use of both the geometrical analysis and Poincare´ sections.
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I. INTRODUCTION

Mixing in low Reynolds numbers flows is a topic of gre
interest in fluid dynamics as many mixing devices invol
flows where viscous forces dominate. For example, effic
mixing can be performed at low Reynolds number in cav
flows ~Chien, Rising, and Ottino@1#!, or in the annular re-
gion between eccentric rotating cylinders~Jeffery@2#, Ballal
and Rivlin @3#, Aref and Balachandar@4#!, or between con-
focal elliptic cylinders ~Saatdjian and Midoux@5#!. The
mechanism leading to these efficient mixing properties
Lagrangian chaos. Indeed, when the trajectory of a fl
point is very sensitive to its initial position, two fluid point
initially close to each other might quickly move away
time evolves, so that a spot of dye injected in such a flow
likely to spread rapidly into the whole flow domain.

The flow we consider in the present paper is divergen
free and two-dimensional. Ifc(x,y) denotes the stream
function, the position (x,y) of a tracer evolves according t

dx

dt
5

]c

]y
~x,y!, ~1!

dy

dt
52

]c

]x
~x,y!, ~2!

so that the system can be described as a Hamiltonian sy
with one degree of freedom. Such a flow cannot prov
chaos, and has very poor mixing properties. However, if
phase portrait of this Hamiltonian system displays h
moclinic or heteroclinic trajectories, the flow is structura
unstable and is likely to provide chaos under temporal p
turbations~Ottino @6#!. In particular, this makes it possible t
design efficient time-periodic two-dimensional mixers.
Time-periodicity in various two-dimensional mixers~like
cavity flow, or journal-bearing flow, or flow between conf
cal ellipses! is provided by moving the walls in a periodi
manner. In the present work time periodicity will b
achieved by inducing time-periodic electric currents in a t
1063-651X/2001/63~5!/056309~9!/$20.00 63 0563
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layer of fluid near the boundaries~‘‘electromagnetic skin’’!,
so that the fluid will be stirred in a periodic manner.

In order to quantify mixing efficiency one has to defin
what is mixing on mathematical grounds. The followin
mathematical~purely topological! definition has been pro
posed in Ref.@6# ~strong topological-theoretical mixing!.
One will say that a flow is a mixer iffor all subset A and B
of the flow domains with nonempty interior, there exist
.0 such that for all t.T:F t(A)ùBÞf, whereF t(X) is
the position at timet of a tracer initially located atX. This
means that a spot of dye~or any passive scalar! initially
placed in the continuum will cover any part of the flow d
main at sufficiently long times. This definition is muc
weaker than definitions involving the scalar concentrati
Indeed, perfect mixing requires the scalar concentration to
uniform, whereas the above definition only implies that t
scalar concentration is nonzero everywhere within the fl
domain. As an example, consider the sedimentation of sa
a water tank after stirring: even if the salt concentration
larger at the bottom of the tank than at the top~because of
gravity effects!, it is nonzero everywhere, so that it wou
satisfy thetopological criterion above in spite of the low
quality of mixing. However, the main advantage of this c
terion is that it does not require the computation of a euler
field ~scalar concentration!, and can be used from Lagrangia
analysis of a set of tracers. Note that the timeT in the above
definition depends onA and B, and is finite if molecular
diffusion is non-negligible. This definition will be used an
modified in Sec. III in order to take into account the leng
scale of the subsetB, which is clearly an important paramete
to quantify the goodness of mixing. Also, the position ofB is
an important parameter: any zoneB of the flow domain has
to be reached by the dye. Finally, whatever the scalel and
the positionx of B, the time T has to be set as small a
possible. This means that mixing efficiency must be qua
fied in terms of scale, position, and time. In the present pa
we make use of box-counting techniques to derive a criter
involving scale and time. It enables to plot a ‘‘spectrum
where a mixing efficiency at scalel is plotted versusl, and to
estimate the time required for mixing. In the next section
©2001 The American Physical Society09-1
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present the mixing device we use. Results are analyze
Sec. IV.

II. THE MAGNETOHYDRODYNAMIC MIXING DEVICE

We consider an electrically conducting liquid lying with
a cylindrical tank of radiusR0 , and two parallel electric
wires ~inductors! initially located at I 15( l 0,0) and I 2
5(2 l 0,0), with l 0.R0 ~Fig. 1!. The electric current in in-
ductor I 1 is IA2 sin(vt), and electric current in inductorI 2

is 2IA2 sin(vt). The magnetic fieldB induced by these
currents creates a flow within the fluid via the Laplace for
The typical velocity of this flow is proportional toI 2 and
decays withl 0 . When the frequencyv of the electric current
is large, the induced Stokes flow can be calculated ana
cally ~Brancher and Goichot@7#!. Indeed, in this case th
induced current densityj within the fluid is located in the
vicinity of the boundaryr 5R0 , wherer 5Ax21y2, inside a
layer of thickness

d;
1

Am0sv
!R0 , ~3!

FIG. 1. Sketch of the quadripolar flow.O is a stagnation point,
and the black dots~d! are the centers of four vortices of equ
strength in absolute value. The flow is two-dimensional and emb
ded in a circle of radiusR0 . ~b! Shows the device after the rotatio
has been operated. The gray points I1 and I2 indicate the positio
of the electrical inductors.
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where m0 denotes the magnetic permeability ands is the
electrical conductivity of the liquid. The velocity of the flui
inside the magnetic layer can then be calculated by mak
use of matched asymptotic expansions~Sneyd and Moffatt
@8#!, so that the flow inside the whole cylinder can be o
tained by solving the flow equations with a boundary con
tion at r 5R0 . This boundary condition reflects the dynam
ics, and in particular the effect of the pressure gradie
created by the Laplace force, inside the magnetic layer. Ifu0
denotes a typical velocity of the fluid, we assume

Re5
u0R0

n
!1, ~4!

where n is the kinematic viscosity of the fluid. The flow
inside the whole domain can therefore be calculated by s
ing the Stokes problem

D2c50, r ,R0 , ~5!

c50 and 2
]c

]r
5Vm~u! at r 5R0 , ~6!

wherec is the stream function andVm(u) denotes the azi-
muthal velocity atr 5R0 . This problem has been solved b
Brancher and Goichot@7#, and their analytical solution is
used in the present paper to investigate the mixing prope
of this device. The spatial structure of the resulting veloc
field only depends on the ratio

d5
l 0

R0

,

which is an important parameter of the device. Figure

d-

FIG. 2. Streamlines of the flow in the first quadrant obtain
from the analytical solution of Ref.@7#, for d53.
9-2
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GEOMETRICAL ANALYSIS OF CHAOTIC MIXING IN A . . . PHYSICAL REVIEW E63 056309
shows the streamlines of this flow whend53. Heteroclinic
trajectories are visible, which is an important feature for m
ing.

The shape of the streamlines can be readily interprete
means of elementary physical arguments. When the
quencyv is large the electromagnetic effects are felt on
inside the layerR02d<r<R0 . In this layer the fluid will
move from high-pressure zones to low-pressure zones.
electromagnetic pressureB2/2m0 has a maximum near th
inductors~that is, at pointsA andC!, and is minimum atB
andD ~Fig. 1!. Hence, the fluid within the layer moves from
A to B andD, and fromC to B andD.

As mentioned above, two-dimensional steady flows h
very poor mixing properties. In order to improve the mixin
properties of this flow we rotate the axisI 12I 2 with an an-
gular velocityV(t)56V0 in a periodical manner. The sig
of V(t) is modified everyT0 seconds, so that the stretchin
axisOx ~and henceforth the compression axisOy) oscillates
around its initial position@Fig. 1~b!#. The oscillation of the
axesOx andOy leads to a stretching-and-folding mechanis
which is the purpose of our study. The Stokes numbers
satisfies

St5
R0

2V0

n
!1. ~7!

Conditions ~4! and ~7! manifest the fact that the diffusiv
time scaleR0

2/n is much smaller than both the convectiv
time scaleR0 /u0 and the rotation time scale 1/V0 . The
stretching-and-folding mechanism will be efficient if the tw
time scalesR0 /u0 and 1/V0 are of the same order of mag
nitude, that is,

s5
u0

R0V0

;1. ~8!

Clearly, this parameter is of major importance for mixin
efficiency, and its influence has been investigated in det
by Brancher and Goichot@7#. In the following we will take
s51 and discuss the effect of other parameters. Because
rotation of the axes is not steady, but reversed everyT0
seconds, it is also of interest to define the ratio:

k5
V0T0

2p
, ~9!

which is the number of turns performed by the axes betw
two consecutive reversals. This ratio is also of major imp
tance for the quality of mixing, as it strongly influences t
folding effect.

III. GEOMETRICAL TOOL TO ANALYZE MIXING
EFFICIENCY

The mixing efficiency of this flow can be quantified b
making use of elementary box-counting techniques~see, for
example, Nicolleau@9#; Vainshtein, Sagdeev, and Rosn
@10#!. By following tracers~or a ‘‘numerical spot of dye’’! in
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the fluid ~Fig. 5!, one observes that the dye turns into
elongated filament, due to the stretching induced by the fl
and that this filament rapidly spreads all over the doma
Intuitively, the fact that thespreadingis fast is a satisfactory
criterion for efficient mixing, and in the next two sections w
try to quantify these two features in terms of aspatial and
temporalcriterion.

A. Spatial criterion for mixing efficiency

Let F be the subset of the plane covered by the dye
time t. If the dye initially covers an areaF0 , then

F5F t~F0!.

We then quantify the space-filling properties of the dye d
tribution by means of elementary box-counting techniqu
~Falconer@11#!. Let N0( l ) be the minimal number of boxe
of size l required to cover the flow domain. If the flow do
main is a square of sizeL0 we haveN0( l )5L0

2/ l 2, and if the
flow domain is a disk of diameterL0 we have N0( l )
.pL0

2/4l 2. In any case, we have

N0~ l !;
L0

2

l 2
, ~10!

whereL0 is the diameter of the flow domain, and is also t
size of the smallest box covering the whole domain. IfN( l ,t)
is the minimal number of boxes of sizel required to coverF
at timet, and if the dye is perfectly mixed~in the topological
sense! with the carrying fluid after some timeT ~i.e., F is
equivalent to the flow domain!, then

N~ l ,t !5N0~ l ! for all l .0 and t.T,

that is, the coverage ofF also covers the whole flow domain
This last relation manifests the fact that perfect mixing~in
the geometrical sense! is achieved when the dye has a we
defined Kolomogorov capacityD52, and an integral scale
L0 . In the general case we have

N~ l ,t !<N0~ l !,

so that it is interesting to consider the coverage fraction

t~ l ,t !5
N~ l ,t !

N0~ l !
, ~11!

which is equal to 1 for alll .0 andt.T if perfect mixing is
achieved, and which is smaller than 1 if not. This ratio c
also be thought of as the ratio of the area of dye’s cover
@; l 2N( l ,t)#, to the area of the flow domain (;L0

2).
For a fixed timet one might havet( l ,t)51 for some

scalel, t( l ,t),1 at other scales, depending on the detai
dye distribution. If we assumeF is an elongated filament o
lengthL(t) and thicknesse(t) ~Fig. 3!, the general shape o
t( l ,t) can be readily obtained. Because the flow is div
gence free, we have

L~ t !;S0 /e~ t !,
9-3
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whereS0 is the area ofF ~which has to be constant if mo
lecular diffusion is neglected!. Also one can check tha
N( l ,t) scales likel 22 for scalesl !e(t) as the filamentF is
‘‘seen’’ like a surface at those scales~Fig. 3!. When l is
much bigger thane(t), but not too large, however,F can be
thought of as a line, andN( l ,t) scales likel 21. This scaling
is valid up to a scaleh ~say!, which is the scale above whic
the circonvolutions of the filament modify the scaling
N( l ,t). This scale can be thought of as the striation thickn
of the dye distribution. In the general case the scaling
N( l ,t) for l @h is unknown and depends on the detail
dynamics of the flow:

N~ l ,t !. f ~ l ! if h! l !L, ~12!

whereL5L(t) is the size of the smallest box covering th
whole subsetF. The function f ( l ) is unknown ~and also
depends ont), but decays faster thanl 21 due to the circum-
volutions of the filament. Finally, in the case whereL!L0 ,
and whenL! l !L0 a single box is necessary to cover t
filament, which is then seen like a ‘‘dot,’’ so thatN( l ,t)
51 there. By making use of Eq.~10!, the order of magnitude
of t( l ,t) can be readily obtained:

t~ l ,t !;H S0 /L0
2 if 0 , l !e~ t !

Ll /L0
2 if e~ t !! l !h~ t !

l 2f ~ l !/L0
2 if h! l !L~ t !

l 2/L0
2 if L~ t !< l<L0,

~13!

and is sketched in Fig. 4 in log-log plot. The coverage fr
tion t( l ,t) quantifies the space-filling properties of the sca
distribution at a given scalel: if t( l ,t) is close to 100%, then
one can say that the scalar distribution is homogeneou
scalel. Note that Eq.~10! is only an approximation when th
flow domain is a disk, and could lead tot( l ,t).1 at large
scales. In practice we do not use Eq.~10! @and therefore Eqs

FIG. 3. Sketch of a spot of dye placed within a domain of rad
R0 at timet50. For sufficiently long times the spot can be stretch
into a thin filament of finite thicknesse.
05630
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~13!#, and we computet( l ,t) directly from Eq.~11!, where
bothN( l ,t) andN0( l ) are obtained by running box-countin
algorithms.

Because the scaling oft( l ,t) cannot be modified forl
<h ~if the dye is not likely to diffuse!, and also because
t( l ,t) is an increasing function ofl, the only way to maxi-
mize t( l ,t) for all l is to have

t~h,t !51, ~14!

as shown in Fig. 4~dashed line!. In this case the spatia
structure of the filament is satisfactory in that the percent
of boxes required to cover the whole domain and intersec
the filament is set as large as possible. By noticing t
eN(e,t);hN(h,t);L we have

t~h,t !;
h2N~h,t !

L0
2

;
h

hopt

<1, ~15!

where we have sethopt5L0
2/L. The scalehopt is the largest

possible value of the striation thicknessh, for a given fila-
ment lengthL. Of coursehopt decreases withL and has to be
as small as possible, but this is not sufficient for satisfact
mixing, ash must also be close tohopt to ensure a satisfac
tory spatial distribution of the dye. We will therefore choo
the ‘‘spatial quality’’ coefficient as the coverage fraction
scaleh, that is,t(h,t), which is the ratio ofh to hopt. Note
that whent(h,t);1 the integral scaleL satisfiest(L,t)
;1, that isL;L0 , which is clearly an important necessa
condition for satisfactory mixing.

In the case wheref ( l ) is a power law of the form

f ~ l !;S l

L D 2D

, h! l !L, ~16!

with DP@1,2# then one might say that the filament has
well-defined Kolmogorov capacityD over the range of
scales@h,L#. For example, whenF is an algebraic spiral of
the form r 5Cu2a, a.0, in polar coordinates (r ,u), then

s

FIG. 4. Sketch of the coverage fractiont( l ) in log-log plot, in
the general case~solid line!, and in the case of a spatially optimum
scalar distribution~dashed line!. The dotted line showst( l ) when
an empty blob of sizel c is present, and mixing is spatially optimum
outside this empty blob.
9-4
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D5111/(11a) ~Vassilicos and Hunt@12#!. Such a spiral
can be obtained when the flow is a point vortex located at
origin, and corresponds toD.1.67. In general, whenD is
not an integer,F is called ‘‘fractal.’’ @Note that the Kolmog-
orov capacity defined above is not equivalent to the Haus
dimension~Falconer@11#!. For example, the Hausdorf d
mension of an algebraic spiral is well defined, but equals
whereas its Kolmogorov capacity is.1#.

When Eq.~16! is satisfied, we obtain a simple expressi
for t(h):

~17!

and we recover the fact thatt(h) is close to 100% only if
D.2 andL;L0 . ~Note that this result is valid only in the
limit where L@L, i.e., for an elongated filament.! Relation
~17! can be used to estimate the efficiency of devices
which the Kolmogorov capacityD is known. For example, if
we consider a fractal distribution of dye withD51.5, and
assumingL;L0 andL/L51000~say! thent(h).0.001, so
that the spatial distribution is not satisfactory. Also, the d
distribution obtained from the Baker’s transformation ha
Kolmogorov capacityD51.67, so that it does not perfectl
fulfill the above criterion. In contrast, the Archimedes spi
has a Kolmogorov capacityD52, which is well defined over
the range of scalesh! l !L ~whereh is the difference of the
radii of two consecutive coils! and fulfills the spatial crite-
rion t(h);1 if L;L0 . Note that the Archimedes spiral is
fictitious structure that cannot be easily obtained in a r
flow.

In practice, we will not try to measure Kolmogorov c
pacities, and we will only measure the ratiot„h(t),t…
5h(t)/hopt(t) and check whether it is close to 1 or not.

B. Spatiotemporal criterion for mixing efficiency

A spatial criterion is not sufficient to quantify mixing e
ficiency, since the time required to reach a satisfactory
distribution has to be set as small as possible. This is
reason why the temporal evolution oft(h,t) is of great in-
terest. In the following we will therefore estimate the qual
of mixing by investigating the evolution oft„h(t),t…. If
t„h(t),t… increases quickly with time up tot51, then we
will say that the mixing is satisfactory. Ift„h(t),t… increases
slowly, or stabilizes to a valuet!1, then we will say that the
mixing is not satisfactory.

C. Characteristic scale of empty blobs

Visualizations of dye distribution often show compact a
eas~‘‘empty blobs’’! that are not covered by the dye, su
rounded by a rather homogeneous dye distribution. This
be observed, for example, in cavity flows or journal-bear
flows when stirring is not performed in an optimum mann
Also, in journal-bearing flows, the flow domain is not simp
connex, so that the diameter of the inner cylinder inevita
appears in box-counting data. The typical length of su
05630
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empty blobs can be estimated as follows. We define
length scalek(t) wheret reaches its mean value

t~k,t !5
1

L0
E

0

L0
t~ l ,t !dl. ~18!

When the dye distribution is spatially optimum, one c
show thatk;hopt. However, when the dye distribution dis
plays an empty blob of typical sizel c then t( l ) shows a
sharp variation atl; l c ~Fig. 4, dotted line!. The above inte-
gral can then be readily calculated, and we get~removing the
time variable!

t~k!;11
S0e

2L0
3

1t~h!S l c

L0

2
h

2L0
D 2

l c

L0

, ~19!

and in the limit wheree!h! l c andS0!L0
2:

t~k!;11t~h!
l c

L0

2
l c

L0

. ~20!

This shows that, in this limit, we have

t~h!<t~k!<1,

so that the only acceptable order of magnitude fork is

k; l c .

We therefore conclude thatk is of the order ofhopt when the
spatial quality criterion is fulfilled, and is of the order ofl c if
an empty blob of sizel c is present. This property is ver
useful to estimate the quality of mixing, and we will use it
Sec. IV.

Note thatk does not give any information about theloca-
tion of the empty blob.

D. Link with a concentration-based criterion

Mixing efficiency is usually quantified by means of th
concentration of the scalar. Because we neglect diffusion
fects, the dye concentration is a binary scalar field:

x~x,t !

5H 1 if xPF ~21!

0 otherwise, ~22!

and we define a ‘‘weak’’ concentration field:

c~x,t !5
l

l 2EBox~x,l !
x~x,t !d2x. ~23!

Mass conservation implies

S05E
Whole domain

x~x,t !d2x5(
i 51

N~ l ! E
Box~xi ,l !

x~xi ,t !d2x.

~24!

Hence we have
9-5
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S05(
i 51

N~ l !

l 2c~xi ,l !, ~25!

and if cmin( l )5min$c(xi ,l ), i 51 . . .N( l )% ~which is non-
zero as the minimum is taken only over boxes that inters
F) andcmax( l )5max$c(xi ,l ), i 51, . . .N( l )%, we get:

N~ l !l 2cmin~ l !<S0<N~ l !l 2cmax~ l !, ~26!

that is @sincet( l )5N( l )/N0( l ). l 2N( l )/L0
2],

cmin~ l !
L0

2

S
<

1

t~ l !
<cmax~ l !

L0
2

S0

. ~27!

We therefore observe that the spatial criteriont( l )51 is a
necessary condition for the concentrationc(xi ,l ) to be uni-
form (;S0 /L0

2). If, in addition, the scalar mass lying withi
each box is the same in every box~i.e., the scalar is ‘‘homo-
geneous’’ in the sense of Hentschel and Procaccia@13#!, then
t( l )51 is equivalent toc(xi ,l )5S0 /L0

2 for all i.
The criterion based ont( l ) is therefore weaker than th

concentration-based criterion, but is easier to use sinc
does not require the use of eulerian fields such as conce
tion.

E. Calculation of the scaleh„t… in the general case

In order to evaluatet from the curvet( l ,t) we have cho-
sen to make use of the periodicity of the mixing devic

FIG. 5. Simulation of dye advection in the MHD mixer, ford
52, s51, andk5

1
4 . From top to bottom and left to right:t50, t

5T, t52T, t53T, t54T, t55T, t56T, t57T, andt58T.
05630
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Indeed, one can check that the scalar at timet has the same
‘‘shape’’ ~although it is thinner! than the scalar at timet
1T, but displays less small-scale circonvolutions~see Fig.
5!. Hence,t( l ,t) andt( l ,t1T) are very close at large scale
but also at small scale, since we know thatt( l ,t1T)
5t( l ,t)5S0 /L0

2 for l !e(t1T). It is only in the vicinity of
l 5h that t( l ,t) and t( l ,t1T) differ significantly. Hence,
t( l ,t)2t( l ,t1T) displays a peak atl;h(t), and the loca-
tion of that peak gives us an estimation ofh(t).

IV. RESULTS

Figure 5 shows the evolution of a set of tracers in t
flow. We use 5000 tracers att50, and dynamical memory
allocations make it possible to use 106 tracers att58T. All
computations have been done on a personal computer.
simulations of this kind have been performed withd52, s
51, andk5 1

16 , k5 1
8 , k5 1

4 , k5 1
2 . Figure 6 shows the dis

tribution of tracers att58T in the four cases. Significan
differences exist, as large empty zones are visible in the c
k5 1

16 and are much smaller in the other cases. These dif
ences can be quantified as follows.

Figures 7, 8, and 10 show the evolution of various ge
metrical variables for the four different simulations of sca
transport in the MHD mixer. We observe that the evoluti
of the perimeter of the spot~which is about twice its length
L) reflects the huge stretching properties of the flow~Fig. 7!,
as the perimeter increases drastically. Fork5 1

2 , the increase
of L(t) is faster than for the three other values ofk, and its
top value is also very large (106 L0), as stretching is more
significant in this case. Note that whenk5 1

4 stretching is
also very efficient, whereas it is much less significant fok

FIG. 6. Distributon of the tracers att58T, for d52 and s
51. From top to bottom and left to right:k5

1
16, k5

1
8 , k5

1
4 , and

k5
1
2 .
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FIG. 7. Evolution of the logarithm of the pe
rimeter ~which is about twice the lengthL), for
k5

1
16 ~s!, k5

1
8 ~3!, k5

1
4 ~1!, k5

1
2 ~* !. In all

casesd52 ands51.
n
,

ly,
he

as

tio

es

t,

In-
.

x-
nal

n-
ges

ges
51
8 andk5 1

16 . This tendency is also visible in the evolutio
of the integral scaleL ~Fig. 8!. Note that, in the four cases
the peak value ofL is reached after two or three periods on
and this is a satisfactory feature for mixing efficiency. T
decay of the microscaleh is also very much sensitive tok.
The larger thek, the faster the decay ofh(t). This tendency
is also visible in Fig. 9, as the increase oft( l ,t) versusl is
sharper fork5 1

2 than for the three other values. However,
noticed above, it is noth alone, but the ratiot(h)5h/hopt
that enables to quantify spatial mixing efficiency. This ra
is plotted in Fig. 10, and we observe that fork5 1

2 the ratio
t„h(t),t… versust increases faster than for the other cas
and reaches the value 92% after seven periods. Fork5 1

4 the
evolution oft„h(t),t… is also rather satisfactory. In contras
05630
,

smaller values ofk lead to a slower increase oft„h(t),t….
These differences confirm the tendency shown in Fig. 6.

The evolution of the scalek(t) gives valuable informa-
tion about the spatial structure of the scalar distribution.
deed, fork5 1

16 , k remains of the order of 0.1 for long times
In contrast, for largerk the scalek is much smaller, and
drops to 1022 in the casesk5 1

4 and k5 1
2 , in quantitative

agreement with results of Fig. 6.
Poincare´ sections give interesting information about mi

ing, and are easily obtained in the case of two-dimensio
time-periodic flows@6#. Indeed, in this particular case a Poi
carésection can be thought of as a set of stroboscopic ima
of tracers. We have computed Poincare´ sections by using six
tracers, the time elapsed between two consecutive ima
FIG. 8. Evolution of the integral scaleL and
of the microscaleh, for k5

1
16 ~s!, k5

1
8 ~3!, k

5
1
4 ~1!, k5

1
2 ~* !. In all casesd52 ands51.
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FIG. 9. Plot of the coverage
fraction t( l ,t) vs l, from t50 to
t58T ~for d52, s51, and four
values ofk).

FIG. 10. Evolution of the scalek and oft(h),
for k5

1
16 ~s!, k5

1
8 ~3!, k5

1
4 ~1!, k5

1
2 ~* !. In

all casesd52 ands51.
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being T. Each picture of Fig. 11 shows 10 000 images.
clearly appears that the mixing device is very satisfactory
that the tracers spread in the whole flow domain, exc
when k5 1

16 . In this case four empty blobs of size abo
one-tenth of the cylinder diameter are visible, and this s
gests that the scalek(t) should not drop under 0.1L0 , even
for long times~lower graph of Fig. 10!. Other runs with large

FIG. 11. Poincare´ sections in the MHD mixer ford52 ands
51, whenk5

1
16 ~left! and k5

1
8 ~right!. Results whenk5

1
4 and

k5
1
2 are similar to the right figure. Empty blobs of scalek;0.1 are

observed in the case wherek5
1

16, in agreement with the geometr
cal analysis.
s,
n-

ec

05630
t
n
pt

-

empty blobs@14# ~obtained in the cased54, for example!
also lead to a larger limit value fork(t).

V. CONCLUSION

We have investigated the efficiency of mixing in a lo
Reynolds number MHD mixer, by making use of a topolog
cal analysis based on box-counting techniques. The main
vantage of this method is that it gives quantitative, short-ti
information about mixing efficiency and does not require t
computation of eulerian fields such as concentration. T
numerical values of various geometrical parameters ag
with the qualitative results plotted in Figs. 5 and 6, and a
with Poincare´ sections. The main drawback of the geomet
cal analysis is that it is based on a topological criterion
mixing goodness, which is weaker than criteria based
scalar concentration. Because the geometrical analysis is
and can be performed directly from image-processing te
niques, we believe it could be interesting to install such
tool on an experimental facility, in order to analyze and o
timize mixing in real time.

The present analysis shows that the MHD mixer can
extremely satisfactory, as parameters leading to a fast
spatially efficient mixing can be found. We have fixed t
time ratios51, in contrast with Ref.@7#, and observed tha
satisfactory parameters could also be found in this case.
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